

Climate Change

C3S Energy Webinar Global Wind and Solar Power Energy Indicators

3 July 2024

"The global solar photovoltaic energy indicator" Dr Rodrigo Amaro e Silva (ARMINES, ULisbon) Dr Yves-Marie Saint-Drenan (ARMINES)

Goals for this session:

- of Modelling workflow
- of Undergoing improvements
- Expectations for the future

Giving context to the indicator

Capacity Factor:

expected mean power per unit of installed capacity for a given time period

- W/Wp, or any equivalent (e.g., kW/kWp, MW/MWp, etc.)
- Adapts to end-user scenario, since:

PV_{generation} = Capacity Factor × Installed Capacity

We calculate this for three streams: historical (1950-present)

seasonal forecasts (6 months ahead)

projections (2015-2100)

Climate Change

Giving context to the environmental factors

Different levels of dependency towards three main factors

Sun's Path In the Sky

North

Weather

Angle of incidence

June 2

Photovoltai

Solar

South

Land use

Current version of PV indicator

Change

C3S Webinar The global solar photovoltaic energy indicator

Modeling – workflow

Physics-based approach based on CLIMIX model*

Modelled regional PV generation time series

PV conversion model chain

Simple model as a first approach to handle considerable amount of data

• First stage of the service provides only monthly data

* Jerez et al., doi: 10.1016/j.rser.2014.09.041

Modeling – workflow

Physics-based approach based on CLIMIX model

Modeling – exclusion layers

Not all grid cells are considered when modelling/aggregating:

- X Protected areas
- X Water bodies
- X High-slope X High elevation

Change

C3S Webinar The global solar photovoltaic energy indicator

Outputs

Highlighting patterns in space

Outputs

Highlighting patterns in time (e.g., solar brightening and dimming*)

* "Global Dimming and Brightening", IAC ETH Zurich

Providing hourly data

Undergoing improvements

Climate Change

General modeling

Provide hourly data, using a more detailed physics-based approach*

Considers PV module orientation

several loss factors (thermal, optical, module and inverter efficiency) identical exclusion areas

* Saint-Drenan et al., doi: 10.5194/asr-15-51-2018

Climate Change

PV module orientation: an example of a technological factor

Impacts annual yield, but more importantly seasonality

New model considers location-specific distributions*

- Centered in 75% optimal tilt and South orientation
- Based on & expanded from real data from

Image generated in dezgo.com

PRO THE

Change

C3S Webinar The global solar photovoltaic energy indicator

Outputs

Better representation of the annual cycle:

• More detailed loss factors

Intra-day resolution:

- Daily cycle
- Shorter-term weather

Climate

Some computational aspects

Implies considerable number of calculations (in time and memory)

- Large spatial and temporal coverage
- Adding module orientation as 3rd dimension

Great need for optimizing our algorithm

- with ICS we were able to reduce computing time by >75%
- ongoing actions for further improvement

Targeting PV typologies

Undergoing improvements

Climate Change

Targeting PV typologies

PV can be implemented in various contexts, such as

residential rooftops

industrial rooftops

ground-based (with and without tracking)

Climate Change

A matter of seasonality (and yield)

Growth of industrial self-consumption can change regional profile (annual but also intra-day seasonality)

Climate Change

Urban rooftops: different as well

Rooftops in Lisbon

Targeting PV typologies

So, we want to move from a "one-model-fits-all" algorithm

• avoiding overly generic model parameters

Same as an "animal mean height" would not represent any species individually

Change

Targeting PV typologies

Differentiate segments

- Specific model assumptions (e.g., tilt/azimuth, performance)
- Spatial placement considering land use (e.g., urban vs non-urban)
- For large-scale PV: fixed vs single-axis tracking system

Climate Change

Redesigning PV model framework

Increasing accuracy but also modelling flexibility (consider tech. scenarios)

Conclusions

Conclusions

- K Added value of C3S2 Energy contract
- regional PV timeseries for end-users to assess the impact of climate change
 - robust and interpretable
 - iterative product, continuous improvement mindset
- contribute to science through method and review papers (undergoing)
- Benefits from interactions with ENTSO-E* and IEA PVPS Task 16

What's to come (shorter-term)

made available in Copernicus platforms

Already working towards hourly, more accurate modelling

Z Providing data for specific typologies (residential, industrial, utility-scale)

Z Allowing end-users to make similar calculations for their own PV installation

What's maybe to come (longer-term)

- Consider additional typologies
- Validating & refining exclusion zones (e.g. per typology)

(floating PV)

(PV balcony)

(bifa cial PV)

Change

C3S Webinar The global solar photovoltaic energy indicator

What's maybe to come (longer-term)

• Consider non-weather factors impacting PV output

Storage

Curtailment

Soiling

Thank you for your attention.

rodrigo.amaro_e_silva@minesparis.psl.eu yves-marie.saint-drenan@minesparis.psl.eu